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Abstract-Both the direct differentiation and adjoint variable methods for design sensitivity analysis
of transient dynamic, arbitrarily nonlinear thermoviscoelastic coupled systems are presented in this
paper. The approach is based on the thermodynamic description ofsimple materials due to Coleman.
Large strains as well as arbitrary material nonlinearities are accounted for in the derivations. The
domain parametrization or reference volume concept is used allowing a uniform treatment of both
the shape and sizing design sensitivity analysis. Analytical examples demonstrating the use of the
derived equations are given, This approach provides a solid basis for discretization of the developed
equations for subsequent use in numerical computations,
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arguments of functions f, f" f" f3, f.
surface in the deformed and undeformed configurations
specified constants
linear functional of variations
linear functional of Lagrange multipliers
design parameter
solid body under consideration
linear functional of variations
linear functional of Lagrange multipliers
specific heat at constant strain
arbitrary part of the deformed configuration

elements of the inverse Jacobian matrix

material derivative

reference domain

K
K(t-r)
K" Kc

D
D
Dt

D,u' DT partial differential operators with respect to the current values of strains and temperature
D;;(t-r) kernel in thermoviscoelastic constitutive relation
e internal energy per unit mass
f°,f~,f~,f~,f~ functions in the performance functional in the undeformed configuration
f, fl> f" f3, f. functions in the performance functional in the reference configuration
F; components of body force
9; temperature gradient
G unknown function in analytical examples
GI> G" GI> G, specific constants
G;;k/(t-r, t-s) kernels in thermoviscoelastic constitutive relation
Gj(s), GB(s) integrating functions in Stieltjes integral
h convective coefficient
H unknown function in analytical examples
H" H" H" ii, specified constants
J, J Jacobians of the mappings from the reference domain to the undeformed configuration and

from the undeformed to the deformed configuration
Jacobians of the mappings of the boundary in the reference domain onto the boundary in
the undeformed configuration and the undeformed configuration onto the boundary in the
deformed configuration
specified constant
kernel in thermoviscoelastic constitutive relation
sine and cosine Fourier transforms of thermoviscoelastic kernel
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kernels in constitutive relations
wavelength parameter
kernel in thermoviscoelastic constitutive relation
components of the external normal to the boundary in the reference domain, in the deformed
configuration, and in the undeformed configuration
kernel in thermoviscoelastic constitutive relation
performance functional
augmented functional
components of heat flux in deformed and undeformed configurations
prescribed heat flux at the boundary in the deformed configuration and undeformed con­
figurations
internal heat generation per unit volume
intensity of internal heat source

constitutive functional for heat flux in the undeformed configuration

constitutive functional for heat flux in the reference domain

r heat supply per unit mass
R radiation coefficient
S time
S" S, components of surface traction in the deformed and undeformed configurations
Sf' S, components of the prescribed surface traction in the deformed and undeformed configurations
I time
1o terminal time
T absolute temperature
To initial temperature
u, components of displacement
u, components of the prescribed displacement at the boundary
UO,(Xk) initial distribution of displacements
UO,(Xk) initial distribution of velocities
uI sensitivity of U I

va, V deformed and undeformed configurations
w,p = u"p displacement gradients in reference domain
X" X2, X3 Cartesian coordinates in the undeformed configuration
Y" 12, Y3 Cartesian coordinates in the reference domain
Z" Z2' Z3 Cartesian coordinates in the deformed configuration
IX coefficient of thermal expansion
IX(t - r) kernel in thermoviscoelastic constitutive relation
IX" IXc sine and cosine Fourier transforms of kernel
fJ(t-r) kernel in thermoviscoelastic constitutive relation
fJ I solution of adjoint differential equation in example problem
fJ 2 solution of adjoint differential equation in example problem
fJ" Pc sine and cosine Fourier transforms of kernel
, specified constant
r, ro, r boundaries of the reference domain, undeformed and deformed configurations
r,,, r" r T' r q , r,,, r R parts of boundary of the reference domain with prescribed displacements, tractions,

temperature, heat flux, convective boundary conditions, and radiative boundary conditions
r~, r?, r~, r~, r,?, n parts of boundary of the undeformed configuration with prescribed displacements,

tractions, temperature, heat flux, convective boundary conditions, and radiative boundary
conditions

b variation of a quantity
$(t-r), J(X,-y) delta functions
bey' br. iig, Frec~et differentials with respect to the past histories of strains, temperature, and temperature

x gradients
be" f?~. adjoint functional derived from the heat flux constitutive functional

adjoint functional derived from the heat flux constitutive functional

adjoint functional derived from the heat flux constitutive functional

adjoint functional derived from the stress constitutive functional

adjoint functional derived from the stress constitutive functional

adjoint functional derived from the entropy constitutive functional

adjoint functional derived from the entropy constitutive functional

adjoint functional derived from the free energy constitutive functional
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adjoint functional derived from the free energy constitutive functional

parameter in Frechet differential calculations
components of the Green-Lagrange strain tensor
alternating tensor
past strain history
specified constant
specific entropy

constitutive functional for entropy
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I( specified constant
A Lame coefficient
A(t-r) kernel in thermoviscoelastic constitutive relation
Ai" A2' Ai), A~, Ail, A6 , A7' Ai

s, Ai., )., 0' AII' A, h AD Lagrange multipliers
J.1 Lame coefficient
p, Ii mass densities in the undeformed and deformed configurations
Uu components of the second Piola-Kirchhoff stress tensor
u;i past stress history
r time
¢(t-r) kernel in thermoviscoelastic constitutive relation
C1lu(t-r, t-s) kernel in thermoviscoelastic constitutive relation
~, ~ " ~ 2' ~ 3' ~ 4 specified constants

x

......u
t=O

x

'I'
t=O

w
n

constitutive functional for stresses

free energy function

constitutive functional for free energy

internal dissipation
constitutive functional for internal dissipation
derivative with respect to coordinates in the undeformed configuration
derivative with respect to coordinates in the reference domain.

1. INTRODUCTION

A number of publications have appeared recently on Design Sensitivity Analysis (DSA) of
thermoelastic structures (Meric, 1986a, b; Dems, 1987; Dems and Mroz, 1987; Meric,
1987,1988,1990; Tortorelli et al., 1989; Hou et al., 1990, 1991). These publications deal
with thermoelastic systems, that is, they discount hysteretic effects which are significant in
many materials like rubbers and polymers. Two of the above articles (Meric, 1988; Tor­
torelli et al., 1991) deal with fully coupled linear thermoelastic structures, whereas all others
omit the term in the energy equation responsible for the full coupling of the mechanical and
thermal processes. This term may not be very important for a certain class of thermoelastic
structures (Boley and Weiner, 1960), but may become significant for structures exhibiting
hysteresis. Tortorelli et al. (1989, 1991) considered adjoint sensitivities for thermoelastic
structures with nonlinearly elastic constitutive relations and a nonlinear analogue of Fourier
law. All the papers mentioned deal with structures undergoing infinitesimal strains.

Due to the continually increasing CPU and memory capacity of modern computers,
arbitrarily nonlinear thermoviscoelastic coupled calculations based on the finite element
method (FEM) are becoming more feasible for engineering structures. The next logical step
in this direction is to use FEM for structural optimization which requires DSA. In addition,
DSA may be valuable by itself for evaluation of the structural response due to uncertainties
in design or manufacturing. DSA can be implemented either as a finite difference scheme,
or as a special module built into the FEM software making use of the intermediate results
in FEM. The latter approach is much more efficient in terms of CPU time which is critical
for successful implementation of structural optimization. That is why there is a need for
development of DSA approaches for arbitrarily nonlinear fully coupled systems with inter­
nal dissipation.

The present paper deals with arbitrarily nonlinear thermoviscoelastic systems. The
derivations are based on a consistent thermodynamical approach due to Coleman
(1964a, b). The only two constitutive functionals needed in this approach are: the free
energy functional and the generalized Fourier law, i.e. a functional relating the heat flux to
the temperature gradients, the temperature and strains. Both direct differentiation sensitivity
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equations and adjoint sensitivity equations are obtained. It is shown that both groups of
equations are of linear hereditary type similar to linear viscoelasticity. Analytical examples
illustrating the use of the developed equations are given.

2. FIELD EQUAnONS

We consider a continuous solid body B which may be subjected to external forces,
applied displacements, temperatures and external heat fluxes. At time t = -0, external
forces, displacements and fluxes are not applied, and the absolute temperature distribution
is uniform having a value of To. The body B, at this time moment, occupies the undeformed
configuration in the space Va with the boundary rOo As the external excitations such as
forces, displacements, temperatures, etc. begin to act on the body B, it moves and deforms
in space and at time t occupies the deformed configuration Vwith the boundary f.

We introduce a Cartesian coordinate system fixed in space and measure coordinates
with respect to it. Denote the coordinates of a point in the undeformed configuration as x I,

X 2, X 3 and the coordinates of a point in the deformed configuration as Z I, Z 2, Z 3'

The motion, deformation and the thermal state of the body B should satisfy five
physical laws :

(a) Balance of Momentum

~ r pudC = r pFdC+ rSdA­
Dt Jc I Jc I JA I ,

(b) Balance of Angular Momentum

(c) Conservation of Mass

D_ r p~dC = O.
Dt Jc '

(d) First Law of Thermodynamics: Conservation of Energy

(I)

(2)

(3)

~(! r pujujdC+ r pedC) = r prdC- rqjnjdA+ r PF;U;dC+f S;u;dA; (4)
Dt 2 Jc Jc Jc JA Jc A

(e) Second Law of Thermodynamics: Clausius-Duhem inequality

(5)

Integration in the above equations is over C-an arbitrary part of the deformed con­
figuration V, A is the C boundary, and D/Dt denotes the material derivative. Summation
over repeated indices is assumed everywhere. The variables in (1)-(5) are defined as:
p-mass density, uj--eomponents of displacement, F;--eomponents of body force, S;­
components of surface traction, 6ijk-alternating tensor, e-internal energy per unit mass,
r-heat supply per unit mass, qi--eomponents of heat flux, n;--eomponents of the exterior
unit normal to the surface, ~-specific entropy, T-absolute temperature.

In the following derivations we will adopt the Lagrangian point of view that is com­
monly used in the description of solid bodies. Equations (1)-(5) can be easily reformulated
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in terms of the undeformed configuration for Lagrangian description, and then, with
appropriate smoothness assumptions the corresponding local equations are obtained:

p =fiJ,

(6)

(7)

(8)

(9)

(10)

Equation (7) is obtained from (2) with the additional assumption ofabsence ofconcentrated
couples.

Equation (9) can also be written as:

pT~-pr-w+qj.j= 0,

where w is the internal dissipation defined as:

where t/J is the free energy defined as :

t/J = e-l1T.

(11 )

(12)

(13)

Commas in all the above equations denote partial differentiation with respect to the coor­
dinates in the undeformed configuration. The quantities used in eqns (6)-(10) are: p-mass
density in the undeformed configuration, O"ij-<.:omponents of the second Piola-Kirchhoff
stress tensor (Fung, 1965), J = loz;/oxjl-Jacobian of the transformation from the un­
deformed to the deformed configuration, qi-<.:omponents ofthe heat flux in the undeformed
configuration, llij-<.:omponents of the Green-Lagrange strain tensor expressed in terms of
the displacement components as :

(14)

Components of the heat flux in the undeformed configuration can be expressed in terms of
the heat flux components in the deformed configuration. The components of the normal
exterior to a surface in the deformed configuration iii are related to the components of the
normal in the undeformed configuration n} through the following formula (Fung, 1965):

(15)

where A o is the surface in the undeformed configuration corresponding to the surface A in
the deformed configuration. Therefore, it is clear from eqn (4) that the components of the
heat flux in the undeformed configuration will be:

(16)

Equations (6)-(10), (14) have to be solved with appropriate boundary conditions, initial
conditions and constitutive equations.
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3. THERMODYNAMICS AND CONSTITUTIVE EQUATIONS

We consider simple viscoelastic materials. Such materials are characterized by relation­
ships in which response at a material point depends on the total history of the dependent
quantities, but only at the same material point. Dependent quantities such as free energy
function, stresses, heat flux and entropy in constitutive relations for such material may
depend on strains, temperatures and temperature gradients, but be independent of strain
gradients. Relations between the thermodynamic potentials for such materials were
developed by Coleman (1964a, b) and are also summarized in Oden (1972) and Truesdell
and Noll (1965). All quantities such as stresses, temperatures, strains, etc. are functions of
time in addition to the spatial coordinates Xi:

(Jij = (Jij(X" t-r); T = T(Xh t-r) (17)

with 0 ~ r < 00. Following Coleman, they are called the total histories. Coleman (1964b)
introduced the so-called past histories (J;j, T', etc. which are total histories excluding the
values at the current time t, or, in other words, all the quantities are restricted to the open
interval 0 < r < 00. The constitutive equations consist of four functionals: free energy I/!,
stresses (J'j' the heat flux components qh and the specific entropy '1 which are written in
terms of the past histories C;j, T', the current values eij = Cij(Xl' t), T = T(XI, t) and the
temperature gradients g, = T., as:

ex,

I/! = r'Yo (e;j, T', clm, T),

CD

(Jij = 2.ij (c"" T', Clm, T),
t~O

'x'

q, = Q, (Uj,m, e"" T', gk, T, gl),
r~O

(18)

(19)

(20)

(21)

In (18)-(21), the lower limit 0 and the upper limit 00 in the functionals stress the fact that
the functionals depend on the entire history of the variables. The functionals are defined
on a Hilbert space with a norm introduced in Coleman (1964a) which is based on the fading
memory assumption.

We note that the functional for the heat flux in (20) depends on the displacement
gradients in view of (16). The heat flux, however, depends only on the current values of the
displacement gradients and not on their entire history.

It was shown by Coleman (1964a) that as a consequence of the Second Law of
Thermodynamics formally expressed by inequality (10), the functional for the free energy
'P in (16) is independent of the temperature gradients g" and that the functionals for the
stresses 2., the specific entropy 0, and the internal dissipation n are determined through
the free energy functional as :

00 oc

o (c;j, T',Clm , T) = -D T 'P (e;j, T',clm , T),
r= 0 r= 0

%, X

n = -p[b,. 'P (cij, T',Clm , Tle",)+b T 'P (c;j, T',Clm , TIT')],
ffr=O r=O

(22)

(23)

(24)

where operators D, and D T are partial differential operators with respect to the current
values of cij and T; 'lb, and bT are Frechet differentials with respect to the past histories of
strains and temperatu'~e. e", and t' are calculated as:
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or desrCt-T)
est = - dT '

'r dT(t-T)
T = - dT .

613

(25)

(26)

The vertical line in (24) indicates that the functionals are linear with respect to the following
arguments or in other words specifying the variation direction of the arguments.

The Frechet differentials in (24) can be calculated as:

00

00 a 'I' (e;t+e8;" Tr,elm, T)
~ \TI ( r Tr TI·r) I' T= 0u, T eu, , elm, est = 1m -----a-----

.fl't'=O t-O e (27)

(28)

Therefore, for the description of simple viscoelastic materials in thermomechanical
problems, only two constitutive functionals such as free energy and the functional for heat
flux are required. The functionals for stresses, entropy and internal dissipation are then
determined from (22)-(24).

Everywhere in the following we will use constitutive functionals as functionals of total
histories without splitting them into the past histories and the current values to avoid extra
variables in the notation. That is we write:

00

IjJ = 'I' (est, T, b),
T~ 0

00

(Ju = Su (est, T, b),
T=O

00

11 = e (est, T,b),
T=O

00

qi = Qi (uj•m, est, T, Btl b).
T~O

(29)

(30)

(31)

(32)

We included design parameter b in the above equations emphasizing the fact that the
constitutive equations may depend on it.

4. BOUNDARY AND INITIAL CONDITIONS

The boundary r o in the undeformed configuration is subdivided into two sets of
disjoint domains:

(33)

where
r2 is the boundary with specified displacements,
r~ is the boundary with specified surface tractions,
r~ is the boundary with specified temperature,
r~ is the boundary with specified heat flux,
rg is the boundary with specified convective boundary conditions,
n is the bbundary with specified radiation boundary conditions.

The boundary conditions are written as:
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(1) On r2
M. J. POLDNEFF and J. S. ARORA

(34)

where iii is the ith component of the prescribed displacement.

(2) On r2

(35)

where ng is the kth component of the outward normal, and Si is the ith component of the
prescribed surface traction. S; is defined on the boundary surface in the undeformed
configuration. Its magnitude is referred to the original area of the boundary, but it acts in
the same qirection as the surface traction in the deformed configuration. Since surface
tractions S; are normally prescribed in the deformed configuration, the Si may be dis­
placement dependent because

(36)

where Jr is the Jacobian of the mapping of the boundary in the undeformed configuration
onto the boundary in the deformed configuration and given by the following expression
(Haug et al., 1986):

Jr = J' (37)

Note that follower forces are accounted for in this formulation since S; follows the directions
in the deformed configuration.

(3) On n

where t is the prescribed temperature.
T= t,

o --q;n; = q,

(38)

(39)

where ij is the prescribed heat flux. Again, as in the case of the prescribed surface tractions,
the prescribed heat flux ij is considered to be displacement dependent. Particularly, this
includes the case when the heat flux qis prescribed in the deformed configuration, which
is generally the case. Then,

(5) On n
-q;n? = h(Tr- T),

(40)

(41)

where h is the convective coefficient, and considered to be displacement dependent con­
sistently with what was said about the surface tractions and the prescribed heat flux. Tr is
the fluid temperature.

(6) On n
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(42)

where R is the radiation coefficient which depends on the Stefan-Boltzman constant, the
emissivity, absorptivity and the geometric view factors. TR is the temperature of the radiative
source.

The initial conditions at time t = 0 are:

(43)

(44)

(45)

where UOi(Xk), UOi(Xk) and To are the initial distributions of displacements, velocities and
temperature, respectively.

5. GENERALIZED PERFORMANCE FUNCTIONAL AND REFERENCE VOLUME CONCEPT

The aim of design sensitivity analysis is typically to find design variations or partial
derivatives of displacements, stresses, temperatures, energies or functionals of the above
quantities over a certain period of time, or at the specific time instant t. Such quantities can
be written in a general way as a performance functional P :

where b is the design parameter, Si is the surface traction expressed through the second
Piola-Kirchhoff stresses according to (35).

Depending on the form of the functions P, f?, f~,f~ and f~ in (46), various quantities
can be derived. Particularly, use of the Dirac delta functions in space and/or in time leads
to functionals such as displacements, stresses, temperatures, etc. at a given point in space
and/or in time. Also, note that presence of the displacement gradients in (46) allows
calculations of the quantities in the deformed configuration like the heat flux or the Cauchy
stress. Some simple performance functionals are shown later in the example section.

The problem under consideration is how to calculate the variation of the functional P
given by (46) due to variation of the design parameter b.

To calculate the variation of the functional P we will use the reference volume or the
domain parametrization concept (Haber, 1987; Cardoso and Arora, 1988), to unify sizing
and shape design sensitivity analysis. A fixed reference domain D is introduced. It stays
unchanged during both deformation and design variation processes. The same fixed Car­
tesian coordinate system is used to describe the reference domain as well as the deformed
and the undeformed configurations. Every point in the reference domain D is characterized
by coordinates Yb Y2, Y3 and there is a one-to-one correspondence between the reference
domain and the undeformed configurations. The mapping of the reference domain onto
the undeformed configuration is written:

Xi = xi(Y" Y2, Y3, b). (47)

Dependence on the design parameter bin (47) emphasizes the fact the undeformed con­
figuration is design-dependent. The reference domain, however, is not. The reference domain
is defined in such a way that the Jacobian ofthe mapping J = Iox;/oYj Iis not zero. Therefore,
the inverse mapping exists:

SAS 30:5-8
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(48)

In the above described mapping, the boundary r O and its parts r2, n,n, r~, n,n in the
undeformed configuration correspond to the boundary r and its parts r u, r" r To r q, r h,

r R in the reference domain.
Since we will use elements of the inverse Jacobian matrix extensively, we denote them

as:

OYi
dij ==-;-.

. uX
j

The generalized performance functional P in the reference domain is :

(49)

P = 1'0 [[ Jf(u" wrp,ti, Ub elm, (lSi' '1, T, qa, b) dD+ r Jr fl (8" b) dr+ r Jr f2 (u" b) drJo JD) Jru Jr.
f

+ fr/rf3(qa,b)dr+ L
q

ur
h

ur,Jrf4(T,b)dr]dt, (50)

where wrp = ur;p are the displacement gradients in the reference domain, and semicolon from
now on denotes partial derivative with respect to the reference domain coordinates. The
Green-Lagrange strain components in the reference domain are:

(51)

Jr is the Jacobian of the mapping of the boundary in the reference domain onto the
boundary in the undeformed configuration calculated similarly to (37) :

(52)

with nk being the components of the external normal to the boundary in the reference
domain. 8 i = zi;ld/j(lkjJdmknm are the components of the surface traction in the reference
domain. Functions f, fl> f2' f3' f4 in (50) can be easily expressed through functions
.f0,f?,fg,fg,f~ in (46) knowing the relations between the displacement gradients in the
undeformed configuration and in the reference domain.

By changing the configuration under consideration, the conservation laws (1)-(5) can
be easily transformed into the reference domain to give the equations of motion, the energy
equation, and the Clausius-Duhem inequality in the reference domain:

(53)

(54)

(55)

Equation (7) does not change-the stress tensor is still symmetric. Equation (8) does not
provide new information unless the mass density is given in the reference domain.

The constitutive equations for free energy, stresses and entropy (29)-(31) do not change
their form, but the constitutive equation (32) for the heat flux does. It happens because the
displacement gradients in the reference domain are expressed in terms of the displacement
gradients in the undeformed configuration as follows:
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Ui,j = Ui;ldlj'

Therefore, the constitutive equation (32) in the reference domain can be written as:

00

q; = Q; (Uj;m, em T,gk' b),
<=0

00 00

where the functional Q; is readily expressed in terms of the functional Q;.
1'= 0 r= 0

The boundary conditions on C, r q, r h will change to:

617

(56)

(57)

(58)

(59)

(60)

(61)

The boundary conditions on r u, r T stay unchanged.
The reference domain, however, is not exactly a configuration used for referring all

quantities to it as in the case of the deformed or undeformed configurations. It is rather a
convenient means to parametrize the structure for subsequent design changes. Math­
ematically it means that the independent variables are changed from x], Xz, X3 to y], Yz,
Y3, but it does not mean that stresses, heat flux or surface traction are calculated per unit
area of the reference domain. They are still calculated per unit area of the undeformed or
deformed configurations, but are simply functions of the new variables.

We note that the reference volume concept is naturally translated into isoparametric
finite elements where the reference domain is one which is a union of reference domains of
individual elements. TilUS, the reference volume concept can be readily used in numerical
analysis of thermomechanical problems.

6. SENSITIVITY ANALYSIS BY DIRECT DIFFERENTIATION METHOD (DDM)

Using this approach, we take variation of the functional in (50):

(62)

where a;, ai, al, al, at denote the arguments of functions f, 1], Iz, 13, 14 other than design
parameter b, that is displacements, strains, temperatures, etc. Variations of arguments
ai' ai, al, al, at or field variables are not known and are obtained by solving the varied field
equations along with the varied boundary conditions, strain compatibility and constitutive
equations in the reference domain.

The equations for variations to be solved are:

Jpbu; +b(Jp)u; = (bz;;sdsj(JkjJdlk) ;1+ (z;;sdsjb(JkJd1k);1 + [z;;s(Jkjb(dsjJdlk)];1

+b(Jp)Fi+JpbF;, (63)



618 M. J. POLDNEFF and J. S. ARORA

f>(Jp)e+Jpf>e = f>(Jp)r+Jpf>r- (f>q;Jdj;);j- [q;f> (Jdj;)L + f>Jalmelm +Jf>almelm+Jalmf>elm,

(64)

f>elm = ~ (f>UI;kdkm +UI;kf>dkm + f>Um;kdkl +um;kf>dkl + f>Un;kdkl Un;j djm

+ un;kf>dkIUn;jdjm + un;kdklf>Un;jdjm + un;kdkIUn;jf>~m), (65)

'Xi T ,x

f>a;j = f>." Bij (elm, T, b If>est ) + c5 T B;i (elm, T, b Ic5T) + D h B;j (elm, T, b)f>b, (67)
t~O r~O r~O

x oc

c5q; = DII'," Q; (wrp , elm, T,gb b)c5wrp +c5 T Q; (wrp , elm, T,gb bl c5T) +
r~ 0 r~ 0

~ ~

f>." Q; (Wrp , elm, T,gm,blf>e,·;) + c5,qk Q; (Wrp , elm, T,gm,blf>gk)
r~O r~O

~

+Dh Q; (Wrp , elm, T,ghb)f>b. (69)
T~ 0

If one chooses to use the energy equation in the form (11) with the internal dissipation w
given by (12), eqns (64) and (66) are replaced with the following:

To calculate Frechet differentials c5r.u' c5 T in (66)-(69) one has to know the "directions" of
the variations. They are defined by defining the primary sensitivities, i.e.

Then, the Frechet differentials in (66)-(69) are calculated as:

'x

ex a f (elm +ef>elm , T, b)
c5r.. f (elm,T,blf>e st ) = lim S~O a::-----·

~1 s= 0 e-+ 0 e

ex

~ a f (elm,T+ec5T, b)
c5Tlo (e'm' T,blc5T) = ~~ s~=o"--------=-ae---

where f>est is defined by (65) with c5u; given by (72), and c5T given by (73).
The Frechet differentials

(72)

(73)

(74)

(75)

(76)
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00

be" Sij (Elm, T, b Ibes,) ,
<=0

00 00 00

br Sij (81m, T, b IbT), be e (Elm, T, b Ibes,) , br e (Elm, T, b IbT),
t=O oHt=O r=O

00 00 00

brQ; (W rp , Em T,gk,blbT), be" Q; (Wrp , Es" T,gm,blbe,,), b9k Q; (Wrp,E", T,gm,blb9k)
<=0 <=0 T~O

are linear functionals of the variations be", bTwhich are assumed to be continuous functions
of time. Therefore, according to the Riesz representation theorem (Riesz and Nagy, 1955),
they can be written as a Stieltjes integral:

A(bes,) =100

bek,(t-s)dGt,(t,s),

B(bT) = 100

bT(t-s) dGB(t,s), (77)

where A, B are linear functionals which can be one of the above Frechet differentials.
Integration in (77) is along variable s. The integrating functions Gj (t, s), GB(t, s) may
depend on stresses, temperatures, design parameters, and calculated in the process of the
Frechet differential calculations.

Similarly to Christensen (1982), assuming that Gtl and GB have first continuous
derivatives, taking strain and temperature histories 8ij(t) = 0, T(t) = 0 for t < 0, and
changing variable r = t-s, (77) can be written as:

where

A A f' A
A(bes,) = Gkl(t,O)bekl(t) + Jo Kk,(t,r)bek,(r)dr,

B(bT) = GB(t, O)bT(t) +fKB(t, r)bT(r) dr, (78)

K A ( ) _ dGt,(t, t-r)
kl t, r - - dr ' K B( ) = _ dGB(t, t-r)

t, r dr'

We see, therefore, that eqns (66)-(69) are linear equations of hereditary type, but contrary
to linear viscoelastic ones their kernels depend on two variables t and rand not just on their
difference. It means that the equations for sensitivity analysis do not obey the requirement of
time translation invariance as follows from the axiom of material frame indifference (Trues­
dell and Noll, 1965), for the constitutive functionals of the real physical systems.

Varying boundary conditions (34), (38), (58)-(61), boundary conditions for the design
variations are obtained as:

(I) On r u

(79)

(2) On r.

(3) On r r

bT = bT. (81)
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(4) On r"

(5) On r"
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(82)

(6) On r R

-bq;ldi,ni = bR(T~ - T 4 )Jr +4R(nbTR - T 3bT)lr +R(T~ - T 4 )bJr +q,b(JdiJni'
(84)

We note that variations bSi, bij and bh are sums of variations with respect to the dis­
placements and the design parameter, and the displacement parts of these variations add
to the left-hand side, whereas the design parts add to the right-hand side.

Similarly, varying the initial conditions, we obtain at t = 0:

bT = bTo.

(85)

(86)

(87)

Note that since the reference domain is used, the normal is fixed during the design variation,
and its variation is not present in the equations.

Thus, a boundary value problem for design variations of the field variables is defined.
If the original boundary value problem has a unique solution and is continuously differ­
entiable with respect to the design parameter, the solution of the design sensitivity problem
also exists and is unique. This can be observed from the fact that the derivative of the
original solution with respect to a parameter will be the solution of the design sensitivity
equations in variations. Note that the design sensitivity equations (63)-(69) with the bound­
ary conditions (79)-(84) and the initial conditions (85)-(87) are linear even though the
original equations may be nonlinear. But in spite of the linearity of the design sensitivity
equations and boundary conditions, they depend on displacements, strains, temperatures,
etc. of the original problem appearing as variable coefficients in the equations and boundary
conditions complicating the solution process. Variation of the functional (62) is found by
substituting the solution of (63)-(69), (79)-(84), (85)-(87) into (62). If variations of a large
number of functionals have to be computed with respect to a small number of design
variables, then DDM has certain advantages because for all the functionals with the same
design variables the same DDM equations are solved, and then the solutions are simply
substituted into different expressions for different functionals. On the other hand, if there
are few functionals and many design variables DDM may not be very efficient because a
new set of the design sensitivity equations has to be solved for every design variable. For
the latter case the adjoint variable method described in the next section will be more efficient.

7. SENSITIVITY ANALYSIS BY ADJOINT VARIABLE METHOD (AVM)

The adjoint variable method provides a means to avoid explicit calculations of the
design variations of the field variables. Instead, by introducing the adjoint variables which
are Lagrange multipliers (LM), design variation of a given functional is calculated directly
by solving equations for the LM and substituting them into the formula for variation of
the performance functional. The equations for the LM are obtained from the condition
that all terms in the augmented functional having implicit variations vanish (Arora and
Cardoso, 1992). Therefore, variation of the performance functional will be expressed in
terms of the LM and the explicit variations.
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First, we contract every equation describing the problem with its own LM, integrate
it, and add it to the performance fuctional to get the augmented functional Pa :

Pa = 1'0 [Iv Jf(uj, Wrp , Uj, iib elm, (1", YJ, T, qa, b) dD + fru Jrfl (S;, b) dr

+ fr, Jrf2(u;,b)dr+ LT Jr f3(qa,b)dr+ l.urhur,JrfiT,b)dr

+ Iv [A/I (Jpii j- (zj;sds/hjJdld;I-JpF;) +A2(Jpe-Jpr+(qjJ~;);j-J(1lmElm)

+A'l (elm - !(UI;kdkm+ um;kdkl+Un;kdkIUn;j~m»

+A~(qj- Q; (Wrp,es"T,gk,b»)+A;~((1ij- ~j (e",T,b»)+A6(YJ- ~_" (es"T,b»)
T~ 0 T= 0 T 0

+A7(e- 5/0 (est, T, b) -YJT)JdV+ Lu A~(c5uj-c5u;) dr

+ [ A~(SJr-zj;sdsj(1kjJd'kn/)dr+ [ Alo(t-T)dr
J~ JrT

+ [ AII(ijJr+qJ~;nj)dr+ [ Adh(Tf-T)Jr+qiJ~;nj)drJr. Jrh

+ LR AdR(T~-T4)Jr+qiJ~inj)drJdt.

To obtain boundary conditions for the adjoint variables later on, we set

(88)

Since we consider design variations on the solutions of the field equations, the variations
of all field equations times LM are zero, and c5P = c5Pa• Therefore, we can take variation
of the augmented functional Pa to obtain the sought variation of P. Taking the variation
of (88), part of the variation of the functional will split into integrals of LM variations
times the field equations plus LM times the variation of the field equations. Knowing that
the field equations are satisfied, we drop the first part of the variation obtaining the following
expression for the variation of the augmented functional Pa :

+ Iv [A;I (Jpc5ii; +c5(Jp)ii;- (c5zj;sdsj(1kjJd,k);,- (z;;sdsjc5(1kjJdlk);,

- [zi;s(1kjc5(dsJd,k));,- c5(Jp)Fi+ Jp{)Fi)

+A2(c5(Jp)e+Jpc5e- c5(Jp)r-Jpc5r+ (c5qiJ~;);j+ [qic5(J~i)L
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+()qJ~inj+q/)(Jd;;)n;)dr - L..1 2 ({)h(Tr- T)Jr +h({)TJ-{)T)Jr

+h(Tr - T){)Jr +()qiJ~in;+qi{)(Jd;in;) dr

- f A2({)R(T~ - T 4)Jr +4R(Tk{)TR - T 3{)T)Jr
JrR

(89)

Now, the idea behind the AVM is to represent (89) as integrals of expressions depending
on the LM .1\ through .1 13 times the implicit variations {)ui, ()eij, {)(Jij, {)e, {)qi' {)T, (),.,. Then,
by equating multipliers of the implicit variations to zero, the equations and the boundary
conditions for LM Ai) through A13 are obtained, thus eliminating all the implicit variations.
The remaining terms will represent variation {)P of the performance functional P, but will
contain only the explicit variations.

To isolate the implicit variations, we perform integration by parts every time we find
derivatives of the implicit variations both in time and in space. In the case of second
derivatives, we perform integration by parts twice. We have also decided to drop the
variations of the boundary conditions on r ll and r T'

To isolate the implicit variations for the hereditary Frechet differentials in (89), we use
the form in (78). We contract it with LM Ai; and integrate it from 0 to to as in (89) :
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fO )"ij Aij(c5est ) = fO ).,ij[Gjk,(t,O)c5ek,(t)+£Kjk/(t,t)c56k/(t)dt]dt,

fO ).,ijBij (c5T) = fO ).,ij[GZ(t,O)c5T(t) + f KZ(t,t)c5T(t)dt]dt. (90)

Changing the order of integration in the double integrals, we obtain:

(91)

where Af,().,ij), B*().,ij) are linear hereditary functionals of the following type:

(92)

The hereditary functionals act now on the LM )., instead of the implicit variations c5e." or
dT, thus allowing them to be isolated.

After performing the mentioned integration by parts both in space and time, changing
the order of integration for hereditary terms, and grouping terms, (89) takes the form :

+ (![).,t/d/k +).,t,dlj +A\;/Ui;s(dsAk +dskdlj-)] -JA2Bkj+A"! +J!",)c5(Jkj

+(-Jpi2+A7 +Jfe)oe

+( -OTg;o*(A~)+ (09m g;o*(A~) dpml-OT~t (A~)-OT~~().,6)-OT i~ ().,7)-11A7+ JfT)OT

+( -).,2;jJ~i+A~+Jfq)Oqi + (A6- n7+Jf~)011]dD+ tu [_Ai, +Jrfl;s)oSi dr

+ r [AiJ;/dsj(JkJd/knS - ().,'f'dqm +Ui;pA'f'dqmdp/)nq-A'4 (q~) np+Jrf2;ui+JfWipnP]OUidrJr" T 0 .WJp
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where • means a linear hereditary functional acting on LM and defined by (92), and oPe is the
part of the general performance functional having only the explicit design variations given by
the following expression:

OPe = 1° (fo (OJf+Jfb+A.iI[O(JP)U;-O(JPF;)]+Ail;/O'kj[OX;;sdSjJd/k+Zi;so(dsJd/k)]

+ Ado(Jp)e-o(Jph)+(q;O(J~;));j] -oJO'/mS/m +A/j [U/;q odqm +Um;qOdq/+Uk;pUk;qo(dpmdq/)]

_r A,i1o(JrS;)dr+ r A2[O(cjJr)+qio(J~i)nj]dl
Jr" Jrq

+ r A2 [o(RJr)(T~ - T 4
) +4RJrT~oTR +qio(J~;)nj] dr

Jr R

(94)

To make the implicit variations disappear, the equations and boundary and terminal
conditions for LM are obtained. The AVM equations are:

(100)
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The boundary conditions are:

(I) On r u

(2) On r,

625

(101)

(102)

).,;I;tdsj(JkjJdtkns - ()., t'dqm +u;;p).,t;'dqmdpt)nq -).,4 (g~t/spns+Jr 12;u, +Jfw,pdspns = 0;

(103)

(3) On r h

00

-Og",Q;*()"~)dpmnp-).,2Jrh+Jr/4;T= 0;
<=0

00

-()gm Q;* ()"~)dpmnp -4).,2lrRT3 +lr14;T = 0;
<=0

(104)

(lOS)

(5) On r q

00

-Ogm Q;*()"~)dpmnp +Jrf4;T = 0;
<=0

(6) On r T

The terminal conditions are:

Then, variation of the general performance functional P will be:

oP = oPe'

(106)

(107)

(108)

(109)

(110)

(Ill)

If the energy equation (II) is used, then attaching (70) and (71) via LM ).,2, ).,7 and going
through similar derivations, adjoint equations (96), (97), (98), (99) and (101) are replaced
by the following equations:

(113)

(114)
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A2Jp~ -(jr 97: (A~) + ((j'9m 97: (A~)dpm )p -(jr ~t (A~) - (jr ~~ (A6)

. "'* ' d('1A7)-Jp1Jr ~o (/q) -Jp Cft +Jfr = 0, (115)

(116)

The boundary conditions stay the same, but one extra terminal condition should be satisfied
in addition to (108)-(110) :

(117)

We see that the number of the AVM equations depends on the number of functionals for
which sensitivities have to be calculated and is independent of the number ofdesign variables
which is consistent with what was said in the DDM section. Therefore, depending on the
problem at hand, either AVM or DDM has to be chosen for the best benefits. We note also
that AVM problem is a terminal value problem meaning that all primary field variables
have to be known for every instant in time from 0 to to. This fact complicates numerical
implementation since AVM sensitivities cannot be obtained along with the primary solution
by marching in time, but rather have to be calculated after the complete primary solution
was obtained producing massive computer memory requirements because the primary
solution has to be stored at all time instants.

8, ANALYTICAL EXAMPLES

8.1. Example 1: Thermoelastic medium, DDM
We consider here design sensitivity calculations ofa steady-state solution for an infinite

thermoelastic medium subjected to a prescribed rate of heat generation similar to one
described in Boley and Weiner (1960).

Infinitesimal strains and linear elastic Hooke's law are considered. The internal heat
generation per unit volume Q is given by:

(118)

where L is a wavelength parameter.
Appropriate constraints are applied so that only one component of the displacement

field u I is non-zero. Also, typical of thermoelasticity with infinitesimal strains, it is assumed
that TITo « 1. Here and everywhere below Tmeans difference between the actual absolute
temperature and the initial absolute temperature.

The free energy function is (Nowacki, 1986):

( A) 2 pc 2
pt/J=pt/Jo+ ,u+2 BII-(3A+2,u)IXBIIT-2To T,

where

A, ,u are the Lame coefficients,
IX is the coefficient of thermal expansion,
c is the specific heat at constraint strain.

The equations to be solved are:

(119)
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ocr I I 02U ,

ox, = P otl ,

. oq\
pTorJ = - ~ +pr,

UXI
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(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

Equations (120)-(127) are reduced to two equations to be solved for the displacement u,
and the temperature T:

(128)

(129)

Introduce a nondimensional time variable r = kt/pcL 2 and assume QI(r) = Qo sin r. The
solutions then are taken in the following nondimensional form :

T x,
To = G(r)cosL"'

For the unknown functions H(r) and G(r) obtain the following equations:

where

(130)

(131)

(132)

(133)
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.1 = (3A+2jl)2(X2To
(A+2jl)pc .

(134)

(135)

Solving (132), (133) for steady-state solutions, we obtain:

where

QOL 2(1-K 2).1
HI = [(I-K 2)2+(I+.1-K2)2]kTo'

QoU(1 +.1-K2).1
H 2 = - [(I-K 2)2+(1 +.1-K2)2]kTo'

QOL2(1-K 2)2
G 1 = [(1-K 2)2+(I+.1-K2)2]kTo'

QoL 2(I-K2)(l +.1-K2)
G2 = - [(1-K 2)2+(1 +.1-K2)2]kTo·

(136)

(137)

(138)

(139)

(140)

(141)

Since the problem is linear, the solution is a sum of the steady-state and transient solutions.
For the same reason the design sensitivity solution is a sum of steady-state sensitivity
solution and transient sensitivity solution. The steady-state part in the sensitivity solution
corresponds to the steady-state part in the original solution, and, therefore, only the steady­
state part in the original solution needs to be taken into account for sensitivity analysis
since we are interested in the steady-state sensitivity.

The chosen design parameter is To. Then, the sensitivity equations in DDM are reduced
to two equations for the displacement and temperature sensitivities Ub and T:

We note that except for the right-hand side (142) and (143) are not different from (128)
and (129). Therefore, solving them similarly, we obtain the solutions for sensitivities:

(144)

(145)

where
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H 2(1-K2)-H1(1-K2+A)
AI = [(1-K 2)2+(I-K2+A)2]To A,

H,(1-K2)+H2(1-K2+A)
A 2 = - [(I_K2)2+(I-K2+A)2] To A,

_ H2(1-K2)2-Hl(1-K2+A)(1-K2) A
B.- [(I_K2)2+(I_K2+A)2]To '

_ -HI(I-K2)2-H2(I-K2+A)(I-K2) A
B2 - [(1-K 2)2+(1-K2+A)2]To .

Taking derivatives of HI> H 2 , GJ, G2 with respect to To, we obtain

dH l
dT

o
=AJ,

dH2
dTo = A h

dG.
dT

o
= BI>

dG 2
dTo = B2•

Hence,

dT _
dT

o
= T.
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(146)

(147)

(148)

(149)

(150)

This verifies that the solutions of the sensitivity equations (142), (143) at> t are the
sensitivities of Uh T.

8.2. Example 2: Thermoviscoelastic medium, DDM
Consider the same problem as in the previous example, but with viscoelastic material.

We consider a linear thermoviscoelastic material with infinitesimal strains and with the free
energy function proposed in Christensen and Naghdi (1967) :

it OSij it oT(r)pt/J = pt/Jo+ Dij(t-r)-dr- l(t-r)--dr
-00 or -00 or

f t f' oSij(r) oT(s)- <lVt-r,t-s)----drds
-00 -00 or os

1 it it oT(r) oT(s)- - m(t-r,t-s)-- --drds.
2 -00 -00 or as

The constitutive equations for stresses and entropy are:

(151)
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II oek,(r) I' oT(r)
(Iii = Dii(O) + Gijk,(t-r,O)-::l-dr- <l>ij(O,t-r)--::ldr,

-w ur -w ur
(152)

(153)

Equations (120), (123), (124), (126) and (127) from the previous example do not change.
Neglecting the second order terms, the current system of equations is reduced to two
integrodifferential equations for the displacement U I and the temperature T:

(154)

(155)

where

K(t-r) = G1111(t-r,0), cf>(t-r) = <l>11(t-r,O),

dcf> dn
0( = dt' n(t-r) = m(t-r, 0), {J = dt'

Assuming that the internal heat source is given by pr = sin t cos (x 1/L) we obtain the steady­
state solutions:

(156)

(157)

where

k
{Js- L 2 To 2 n(O)+{Jc

~I = O(s+ K;+K; [(p+Ks)Ks+Kcl+p K;+K;'

(158)

(159)

(160)

(161)

(162)



Design sensitivity analysis of coupled thermoviscoelastic systems 631

k

;: = A.(O)- PS-~+(n(O)+Pc)[(P+Ks)Ks+K~] (163)
<.,2 (1c+'I' P K2+K2 K2+K2 ,

s esc

with K., Kc, (1., (1c, Ps and Pc being sine and cosine Fourier transforms of the respective
relaxation functions with unit angular frequency.

The design parameter is the intensity of the internal heat source Qo. Then, performing
the Frechet differentiation and reducing the obtained sensitivity equations to two equations
for the sensitivities of the displacement UI and the temperature f, we obtain:

(164)

(165)

where (prY is 8(pr)j8Qo.
Again, the sensitivity equations are identical to the primary equations with the excep­

tion of the right-hand side due to the linearity of the primary equations.
Solving the above equations, we obtain:

(166)

(167)

with ii" ii2 , 0 I and O2 being given by the following expression:

(168)

(169)

(170)

(171)

It is clear from (158)-(161) and (168)-(171) that

- dH ,
HI = dQo'

- dH2

Hz = dQo'

_ dG]

G'=dQo'

$AS 3O:5-C
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(172)

and, therefore, the obtained ill and f are sensitivities of u I and T.

8.3. Example 3: Thermoelastic medium, AVM
We consider the same problem as in example 1, but a quasistatic one meaning that the

magnitude of the inertial term is small compared to the two other terms in eqn (129), and
it can be dropped. Equation (128) does not change. Now we are considering the interval
[0, L] along the x I axis. The boundary conditions are:

Consider the following expression for the heat source:

Q
. nXI

pr = 0 sm t cos y .

The initial condition is:

T(O) = O.

We express the displacement field and the temperature field as:

nXI
T= G(t)coSy'

For the functions Hand G, we obtain equations:

~f!+'H = Qo sin t,

G=XH,

where

n(,l.,+2J.l) n
~ = pc L~(3,l.,+2J.l) +(3,l.,+2J.l)L~To,

n 3(,l.,+2J.l)
, = k L3~(3,l.,+2J.l)'

n(,l.,+2J.l)
X= L~(3,l.,+2J.l)·

Solving eqns (177), we get:

H = HI (cos t-e-<i/~)') + H 2sin t,

G = XHI(cos t-e-<m)')+XH2 sin t,

where

(173)

(174)

(175)

(176)

(177)

(178)
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(179)

To illustrate an application of AVM we will calculate sensitivity of the displacement u, at
the coordinate XI = Y and point in time t = 't" with respect to the design parameter Qo. In
such a case the general performance functional becomes:

(180)

The adjoint equations in the case of the infinitesimal strains cannot be obtained by just
dropping the higher order terms like in the case of a nonlinear continuum. The entire
process of derivation of the adjoint equations has to be repeated in order to arrive at the
sought equations. The adjoint equations obtained in our case are:

(181)

Equations (181) can be reduced to two equations for AI and A2:

It is clear, however, from (93) and (176) that (182) can be written in a weak form :

(183)

Expressing AI and A2 as

A p. 7I:X,
1= ,slnT'

(184)

and substituting (184) into (183), we obtain equations for PI and P2:
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kn
~ I = L~(3I+2~5'

Lpc
~? = ~--------

- JrIx(3)0 + 2p) ,

n 2U+2p)
~ 3 = -~iT----'

!' _ Jr_~3A+}p).!'()
'04 - 2 .

(185)

Equations (185) have to be solved with a terminal condition:

(186)

Solving equation (185) with the terminal condition (186), we obtain the solution for f32:

if t < t,
(187)

if t ~ t,

where

Sensitivity ii I of the displacement U I with respect to the design parameter Qo can be
calculated now by utilizing (Ill) and (94). In the present case, the formula becomes:

- flO [ fL. 8(pr) ]
u\ = - Jo Jo )02 8Qo -dx, dt.

Substituting (174), (184) and (187) into (188), we obtain:

_ L [. .or] . ny
u\ = -2--1- ')' Sill t-COS t+e-' Sill -.

2(')' + )K L

(188)

(189)

Calculating the derivative with respect to Qo of the displacement U I given by (176), we
observe that

(190)

which verifies AVM.
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9. CONCLUSION

The formulation for design sensitivity analysis of transient dynamic, arbitrarily non­
linear fully coupled thermoviscoelastic systems was presented. The constitutive rep­
resentation was based on the description of simple thermoviscoelastic materials in irre­
versible thermodynamics. A performance functional allowing to calculate sensitivities of
the quantities on either deformed or undeformed configurations was used. Domain para­
metrization or reference volume concept was used for unification of shape and nonshape
design sensitivities. Both DDM and AVM sensitivity equations were obtained. As usual,
depending on the problem at hand, either of the methods may be advantageous. However,
for transient problems the DDM is probably superior since an initial value problem is
solved contrary to a terminal value problem in the AVM. Simple analytical examples for
DDM as well as for AVM were solved illustrating and verifying the developed equations.
The presented development provides a good starting point for the discretization of the
developed equations and establishing the relations between the primary structural analysis
and the design sensitivity analysis for subsequent numerical implementation.
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mission to publish results.
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